Peroxisome Biogenesis and Selective Degradation Converge at Pex14p
نویسندگان
چکیده
منابع مشابه
Pex14p is not required for N-starvation induced microautophagy and in catalytic amounts for macropexophagy in Hansenula polymorpha.
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisome degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is...
متن کاملPeroxisome biogenesis and degradation in yeast: a structure/function analysis.
In yeast, peroxisomes are the site of specific catabolic pathways that characteristically include hydrogen peroxide producing oxidases and catalase. During the last 10 years, much progress has been made in unravelling the molecular mechanisms involved in the biogenesis of this organelle. At present, 23 different genes (PEX genes) have been identified that are involved in different aspects of pe...
متن کاملPeroxisome biogenesis and positioning.
Plant peroxisomes are extremely dynamic, moving and undergoing changes of shape in response to metabolic and environmental signals. Matrix proteins are imported via one of two import pathways, depending on the targeting signal within the protein. Each pathway has a specific receptor but utilizes common membrane-bound translocation machinery. Current models invoke receptor recycling, which may i...
متن کاملPeroxisome biogenesis and human peroxisome-deficiency disorders
Peroxisome is a single-membrane-bounded ubiquitous organelle containing a hundred different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen different complementation groups of Chin...
متن کاملMultiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation.
Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. Although many molecular components have been defined, less is known of the formation and regulation of invadopodia. The multidomain protein cortactin, which is involved in the regulation of actin polymerisation, is one such component, but how cortactin is m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2001
ISSN: 0021-9258
DOI: 10.1074/jbc.m107599200